computational thinking computational thinking
BiblioMap
Definitionen
Computational thinking is loosely
defined as the habits of mind developed
from designing programs, software
packages, and computations performed
by machines.
Von Peter Denning im Text Remaining Trouble Spots with Computational Thinking (2017) Computational Thinking (CT) is a thought process (or a human thinking skill) that uses
analytic and algorithmic approaches to formulate, analyse and solve problems. I
Von Stefania Bocconi, Augusto Chioccariello, Giuliana Dettori, Anusca Ferrari, Katja Engelhardt im Buch Developing Computational Thinking in Compulsory Education (2016) This term has been defined in many ways and encompasses a broad and somewhat debated range of analytic and problem-solving skills, dispositions,
habits, and approaches used in computer science
Von Marina Umaschi Bers, Louise P. Flannery, Elizabeth R. Kazakoff im Text Computational thinking and tinkering (2014) Unter «computational thinking» wird verstanden, Probleme zu formulieren und deren Lösungen in berechenbaren Schritten (Algorithmen) zu repräsentieren, ob diese nun
von Maschinen oder Menschen ausgeführt werden (K–12 2016, 68f).
Von Susanne Grabowski, Frieder Nake im Journal Medienpädagogik und Didaktik der Informatik im Text Algorithmische Kunst als Bildungsgegenstand (2018) auf Seite 79Computational thinking is the mental skills and practices for
Von Peter Denning, Matti Tedre im Buch Computational Thinking (2019) im Text What is computational Thinking? - designing computations that get Computers to do jobs for us, and
- explaining and interpreting the world as a complex of information processes.
The working paraphrase definition of CT has expanded: “CT is the mental skills and practices for (1) designing computations that
get computers to do jobs for us, and
(2) explaining and interpreting the
world as a complex of information
processes.”
Von Peter Denning, Matti Tedre im Text Computational Thinking for Professionals (2021) Dies meint die Fähigkeit, Probleme und Prozesse so
zu formulieren, dass sie sich mithilfe von Computertechnologien lösen bzw. Bearbeiten lassen. Dies umfasst einerseits die Auswahl und Nutzung und
andererseits auch die Programmierung geeigneter Software.
Von Dominik Petko im Text Die Schule der Zukunft und der Sprung ins digitale Zeitalter (2017) Computational thinking is thinking in terms of
prevention, protection, and recovery from worst-case
scenarios through redundancy, damage containment,
and error correction. It is calling gridlock deadlock
and contracts interfaces. It is learning to avoid race
conditions when synchronizing meetings with one
another.
Von Jeannette M. Wing im Text Computational Thinking (2006) One oft-cited overview
lists nine fundamental concepts as
the core of CT:
Von Peter Denning, Matti Tedre im Text Computational Thinking for Professionals (2021) - Abstraction;
- Data collection;
- Data analysis;
- Data representation;
- Algorithms and procedures;
- Problem decomposition;
- Automation;
- Parallelization; and
- Simulation
Computational Thinking beschäftigt
sich mit der Frage, wie kann der Computer das Problem für mich lösen –
für die Antwort bzw. eine gute Antwort müssen die richtigen Abstraktionen und
der richtige „Computer“ gewählt werden (Wing, 2008). Wichtig ist, dass der Computer
hier nicht unbedingt eine Maschine, sondern auch ein Mensch sein kann,
der die „Berechnung“ durchführt (Wing, 2008).
Von Nadine Bergner, Hilde Köster, Johannes Magenheim, Kathrin Müller, Ralf Romeike, Ulrik Schroeder, Carsten Schulte im Buch Frühe informatische Bildung - Ziele und Gelingensbedingungen für den Elementar- und Primarbereich (2018) im Text Zieldimensionen informatischer Bildung im Elementar- und Primarbereich we have created the following working definition of CT: The conceptual
foundation required to solve problems effectively and efficiently (i.e., algorithmically, with
or without the assistance of computers) with solutions that are reusable in different
contexts. This definition highlights that CT is primarily a way of thinking and acting, which
can be exhibited through the use particular skills, which then can become the basis for
performance-based assessments of CT skills.
Von Valerie J. Shute, Chen Sun, Jodi Asbell-Clarke im Text Demystifying computational thinking (2017) Computational Thinking ist [...] ein Ansatz, mit Problemen umzugehen, der informatische
Konzepte und informatisches Wissen nutzt. Insofern kann man ihn mit dem Begriff
informatisches Denken ins Deutsche übersetzen.
Was dieses informatische Denken im Kern genau ist, ist schwer zu operationalisieren
(National Research Council (U.S.) & Committee for the Workshops on Computational
Thinking, 2010, 2011). In jedem Fall gehört dazu, informatische Konzepte
zur Lösung von Problemen bzw. im Alltag anzuwenden.
Von Nadine Bergner, Hilde Köster, Johannes Magenheim, Kathrin Müller, Ralf Romeike, Ulrik Schroeder, Carsten Schulte im Buch Frühe informatische Bildung - Ziele und Gelingensbedingungen für den Elementar- und Primarbereich (2018) im Text Zieldimensionen informatischer Bildung im Elementar- und Primarbereich auf Seite 60Computational thinking is thinking recursively. It
is parallel processing. It is interpreting code as data
and data as code. It is type checking as the generalization
of dimensional analysis. It is recognizing
both the virtues and the dangers of aliasing, or giving
someone or something more than one name. It
is recognizing both the cost and power of indirect
addressing and procedure call. It is judging a program
not just for correctness and efficiency but for
aesthetics, and a system’s design for simplicity and
elegance.
Von Jeannette M. Wing im Text Computational Thinking (2006) Unter Computational Thinking werden üblicherweise Grundkenntnisse und -fähigkeiten der Informatik zusammengefasst. Hierzu gehören ein Grundverständnis der Funktionsweise eines Rechners und von Computernetzen, Grundkenntnisse zu Algorithmen und Datenstrukturen sowie das Können, einfache lauffähige Programme zu implementieren. Es geht also nicht nur um reines Verständnis von Sachverhalten, sondern auch darum, diese problem- bzw. zielorientiert zu gestalten (vgl. Fraillon et al., 2019, S. 27). Computational Thinking ist somit insbesondere eine Problemlösungskompetenz.
Von Ralf Knackstedt, Marco Di Maria, Jennifer Kolomitchouk, Jürgen Sander im Buch Kompetenzmodelle für den Digitalen Wandel (2022) im Text Kompetenzen für den digitalen Wandel erfordern Orientierungshilfe CT [entspricht] einem grundlegenden Verständnis
allgemeiner grundlegender Informatik- und somit auch Programmierkonzepte, die
in diversen Kontexten und auch auf verschiedene Programmiersprachen anwendbar
sind. CT umfasst diverse Einzelkompetenzen wie ausgeprägtes Abstraktionsvermögen
(den sprichwörtlichen ‹Blick für das Wesentliche›), algorithmisches Denken, die
Fähigkeit, komplexe Phänomene in überschaubare Einzelteile zu zerlegen, Mustererkennung,
analytisch-kritisches Denken (auch im Sinne eines reflektierten Umgangs
mit den digitalen Medien) und viele mehr.
Von Alexander Repenning, Anna Lamprou, Nicolas Fahrni, Nora A. Escherle im Journal Medienpädagogik und Didaktik der Informatik (2018) im Text Scalable Game Design Switzerland Computational Thinking, a
K–12 education movement
begun in 2006, has defined
a curriculum to teach basic
computing in pre-college
schools. It has been dramatically
more successful than prior computer literacy or fluency movements at
convincing K–12 school teachers and
boards to adopt a computer curriculum. Learning problem-solving with
algorithms is seen widely as valuable
for students. Hundreds of CT initiatives have blossomed around the
world.
By 2010, the movement settled on
a definition of CT that can be paraphrased as “Designing computations
that get computers to do jobs for
us.”
Von Peter Denning, Matti Tedre im Text Computational Thinking for Professionals (2021) Very briefly, the key points of Computational Thinking are that
Von James J. Lu, George H. L. Fletcher im Text Thinking about computational thinking (2009) - it is a way of solving problems and designing systems that draws on concepts fundamental to computer science
- it means creating and making use of different levels of abstraction, to understand and solve problems more effectively;
- it means thinking algorithmically and with the ability to apply mathematical concepts to develop more efficient, fair, and secure solutions; and
- it means understanding the consequences of scale, not only for reasons of efficiency but also for economic and social reasons.
Computational thinking is using abstraction and
decomposition when attacking a large complex task
or designing a large complex system. It is separation
of concerns. It is choosing an appropriate representation
for a problem or modeling the relevant aspects
of a problem to make it tractable. It is using invariants
to describe a system’s behavior succinctly and
declaratively. It is having the confidence we can
safely use, modify, and influence a large complex
system without understanding its every detail. It is
modularizing something in anticipation of multiple
users or prefetching and caching in anticipation of
future use.
Von Jeannette M. Wing im Text Computational Thinking (2006) Papert and Harel (1991) were the first who coined the term “computational thinking”
in their 1991 paper on constructionism. They proposed that computational
thinking was a shift on students’ thinking by contributing to their mental growth and
become producers of knowledge using computing. Computational thinking received
broader recognition from Wing (2006) who suggested that computational thinking
was a critical twenty-first-century skill comparable to reading or math. Wing
described computational thinking as “the thought processes involved in formulating
a problem and expressing its solution in a way that a computer—human or
machine—can effectively carry out” (p. 33).
Von Olgun Sadik, Anne-Ottenbreit Leftwich, Hamid Nadiruzzaman im Buch Emerging Research, Practice, and Policy on Computational Thinking (2017) im Text Computational Thinking Conceptions and Misconceptions auf Seite 222Ever since Jeannette Wing (2006) coined the term “computational thinking,” there has been a debate over
providing a single definition. Despite the lack of a consistent definition, within the Computer Science
community, a common understanding of the term emerged related to abstraction as a means for solving
problems. According to P.J. Denning (2009), computational thinking is just a new term for a core
concept, algorithmic thinking. Computer Science is not just about programming, but an entire way of
thinking. The Computer Science community believes that learning to think in this way, to think
computationally, could promote new perspectives and solutions to problems in many other disciplines
(Wenger, 1998).
Von Andri Ioannidou, Vicki E. Bennett, Alexander Repenning, Kyu Han Koh, Ashok R. Basawapatna im Text Computational Thinking Patterns (2011) Computational Thinking (vgl. GAS 2014)
betont den Stellenwert des Nachdenkens und Analysierens von Problemen
und Problemlösungsstrategien, die der anschließenden Umsetzung mit ei
nem Computer vorausgehen. Hierzu gehören die Anwendung verschiedener
In der Informatik zentraler Konzepte wie Logik (analysieren und Voraussagen
treffen), Abstraktion (Unwichtiges weglassen), Dekomposition (Komplexität
in Teilprobleme zergliedern) und Algorithmisieren (Prozesse automatisieren
und nachvollziehen) sowie Arbeitsweisen, die in der Informatik und bei der
Nutzung und Gestaltung digitaler Medien gefördert werden. Hierzu zählen
Kreativität (Gestalten und Umsetzen von Ideen), Debuggen (Fehler finden
und korrigieren). Durchhalten (Probleme meistern lernen) und Kollaboration
(zusammenarbeiten).
Von Ralf Romeike im Buch Software takes command im Text Wie informatische Bildung hilft, die digitale Gesellschaft zu verstehen und mitzugestalten (2017) Wing’s original paper did not offer a succinct definition for
computational thinking, but offered many examples of how
computer scientists tackle common problems: “When your
daughter goes to school in the morning, she puts in her
backpack the things she needs for the day; that’s prefetching
and caching. When your son loses his mittens, you suggest
he retrace his steps; that’s back-tracking. [...] Which line
do you stand in at the supermarket?; that’s performance
modeling for multi-server systems.” [12]. Extrapolating from
these examples, the overall message is that computer scientists
have a toolbox of methods for matching problem situations
to standard types of solution, drawn from various parts of the
computer science curriculum, and, perhaps just as importantly,
a standard terminology to describe these abstract problemsolution
patterns.
Von Steve Easterbrook im Text From Computational Thinking to Systems Thinking (2014) Wing fasst CT als
einen Gedankenprozess, der sowohl die Formulierung eines Problems als auch die
Repräsentation der Problemlösung so darstellt, dass sie von Menschen oder durch
Maschinen ausgeführt werden könnte (2014). Unsere, auf Wings aufbauende, Definition
orientiert sich stark an den Bedürfnissen der Primarschule, ihren Lehrpersonen
und ihren Schülerinnen und Schülern (Repenning 2015). In diesem Sinne wird
CT nach Seymour Papert im konstruktionistischen Sinn als handlungsorientiertes,
transversales Denken mit dem Computer definiert (1996). Dabei fungiert der Computer
als Hilfsmittel, das den menschlichen Denkprozess bei der Entwicklung von Problemlösungsstrategien
unterstützt und dabei hilft, die Konsequenzen des eigenen
Denkens zu visualisieren und damit potenziell mentale oder digitale Artefakte wie
beispielsweise Computerprogramme zu generieren.
Von Alexander Repenning, Anna Lamprou, Nicolas Fahrni, Nora A. Escherle im Journal Medienpädagogik und Didaktik der Informatik (2018) im Text Scalable Game Design Switzerland Die Idee des Computational Thinking setzt einen anderen Akzent (Wing,
2006, 2008): Es baut auf dem Wissen der Informatik über informationsverarbeitende
Prozesse auf und nutzt die Techniken, Modelle, Konzepte und Werkzeuge
der Informatik für das problemlösende Denken. Im Kern sieht Wing dabei die Abstraktion,
und das Denken in unterschiedlichen Abstraktionsschichten. Es geht
darum, zu unterscheiden, was jeweils zur Lösung eines Problems benötigt wird
und was weggelassen werden kann. Komplexe Probleme werden dabei in Teile
und Schichten zerlegt, so dass ein Teil auf ein anderes bzw. eine Schicht auf eine
andere zurückgreifen kann.So muss beispielsweise ein Anwendungsprogrammierer
nicht (immer) genau wissen, wie ein Befehl intern programmiert wurde, um
ihn zu nutzen. Dies hat zwei wichtige Facetten: Erstens kommt es manchmal doch
auf die Details der internen Funktionsweise an – immer dann, wenn es um Randbedingungen
geht, etwa die Frage wie viel Speicherplatz etwas benötigt und ob
der vorhandene dazu ausreicht. Zweitens ist es nach Wing beim Computational
Thinking wichtig, die Beziehungen zwischen den Abstraktionsebenen im Auge zu
behalten.
Von Nadine Bergner, Hilde Köster, Johannes Magenheim, Kathrin Müller, Ralf Romeike, Ulrik Schroeder, Carsten Schulte im Buch Frühe informatische Bildung - Ziele und Gelingensbedingungen für den Elementar- und Primarbereich (2018) im Text Zieldimensionen informatischer Bildung im Elementar- und Primarbereich Bemerkungen
Von Ralf Lankau im Text Bildung und Digitali-Täter (2021)
[Seymour] Papert coined the phrase “computational thinking” for the practice
of procedural thinking he taught to children.
Von Peter Denning, Matti Tedre im Buch Computational Thinking (2019) im Text Teaching Computational Thinking for all Endlich wird in vielen Fächern durch das Lösen von Problemen
("problem solving approach") das informatische Denken
gefördert.
Von Raymond Morel, Pierre Banderet, Fritz Egger, Erich Hui, André Jaquenod, René Jeanneret, Jürg Nievergelt, Edo Poglia, Marcel Sutter in der Broschüre Die Einführung der Informatik an den Mittelschulen (1978) auf Seite 19It represents a universally applicable attitude and skill set everyone, not just computer scientists, would be eager to learn and use.
Von Jeannette M. Wing im Text Computational Thinking (2006) CT is not about getting humans to think like computers, but rather about developing the full set of mental tools necessary to effectively use computing to solve complex human problems [8].
Von James J. Lu, George H. L. Fletcher im Text Thinking about computational thinking (2009) Ubiquitous computing is to today as computational
thinking is to tomorrow. Ubiquitous computing was
yesterday’s dream that became today’s reality; computational
thinking is tomorrow’s reality.
Von Jeannette M. Wing im Text Computational Thinking (2006) Just as the printing press facilitated the spread of the
three Rs, what is appropriately incestuous about this
vision is that computing and computers facilitate the
spread of computational thinking.
Von Jeannette M. Wing im Text Computational Thinking (2006) Computational thinking is a fundamental skill for
everyone, not just for computer scientists. To reading,
writing, and arithmetic, we should add computational
thinking to every child’s analytical ability.
Von Jeannette M. Wing im Text Computational Thinking (2006) Computational Thinking ist ein Ansatz, der bewusst auf
Konzepte und Problemlösungsstrategien allgemeiner
Relevanz fokussiert. Es geht unter anderem darum, den
Zusammenhang zwischen sequenziellen und parallelen
Prozessen zu verstehen.
Von Alexander Repenning im Text Computational Thinking in der Lehrerbildung (2015) auf Seite 4Computational thinking involves solving problems,
designing systems, and understanding human
behavior, by drawing on the concepts fundamental
to computer science. Computational thinking
includes a range of mental tools that reflect the
breadth of the field of computer science.
Von Jeannette M. Wing im Text Computational Thinking (2006) Computational thinking
confronts the riddle of machine intelligence:
What can humans do better than computers? and
What can computers do better than humans? Most
fundamentally it addresses the question: What is
computable? Today, we know only parts of the
answers to such questions.
Von Jeannette M. Wing im Text Computational Thinking (2006) Computational thinking will have become
ingrained in everyone’s lives when words like algorithm
and precondition are part of everyone’s vocabulary vocabulary;
when nondeterminism and garbage collection
take on the meanings used by computer scientists;
and when trees are drawn upside down.
Von Jeannette M. Wing im Text Computational Thinking (2006) Computational thinking ist ein mentales Problemlösen. Es beginnt vor dem Programmieren,
denkt aber die operativen Bedingungen des Computers mit (ebd.). Es
geht um Konzepte des Programmierens im Denken auf die Maschine hin, die das
Mass des Erfolges ist: sie muss so funktionieren, wie das Programm es vorschreibt.
Von Susanne Grabowski, Frieder Nake im Journal Medienpädagogik und Didaktik der Informatik im Text Algorithmische Kunst als Bildungsgegenstand (2018) auf Seite 79Dieses Computerdenken kann man lernen, ohne den konkreten Programmcode zu kennen, sagt auch Ulrich Kortenkamp, der an der Universität Potsdam Didaktik der Informatik lehrt. Er ergänzt aber, dass es viel einfacher und schöner sei, wenn man auch programmieren darf. "Das ist die naheliegende praktische Umsetzung, die man sich nicht nehmen lassen sollte."
Von Christoph Drösser im Text Kids & Codes (2017) Computational Thinking ist ein Denken mit und in numerischen Modellen. Im Altertum wurden Theorien
aufgestellt – Astronomie mit Kugeln auf Kreisen –, in der frühen Neuzeit wurde gemessen und experimentiert – Kugeln auf Ellipsen, Bahnen mit
Abweichungen –, und heute wird zusätzlich numerisch modelliert. Ohne Computer wäre schon der Mondflug unmöglich gewesen.
Von Carl August Zehnder im Text «Die Informatik verändert, was unter Allgemeinbildung zu verstehen ist» (2013) True, an algorithm is a series of
steps—but the steps are not arbitrary,
they must control some computational
model. A step that requires human judgment
has never been considered to be
an algorithmic step. Let us correct our
computational thinking guidelines to
accurately reflect the definition of an algorithm.
Otherwise, we will mis-educate
our children on this most basic idea.
Von Peter Denning im Text Remaining Trouble Spots with Computational Thinking (2017) Computational thinking provides an ontology of computational
concepts, and a set of terms for talking about them. For
example, procedural and data abstractions provide the building
blocks of computational solutions, and sequential and parallel
composition provide a way of putting them together. Hierarchical
decomposition is used to reduce complex problems, and
encapsulation is used to create re-usable solutions.
Von Steve Easterbrook im Text From Computational Thinking to Systems Thinking (2014) If computational
thinking is the central tool of computer scientists, then we
ought to consider whether computational thinking becomes
just another instance of Maslow’s Hammer [16]: “If all you
have is a hammer, then everything looks like a nail”. In
other words, computer professionals may attempt to solve all
problems through algorithmic means, while failing to perceive
those that cannot be expressed using the abstractions of CT.
Von Steve Easterbrook im Text From Computational Thinking to Systems Thinking (2014) Because computation has invaded
so many fields, and because people who
do computational design in those fields
have made many new discoveries, some
have hypothesized that CT is the most
fundamental kind of thinking, trumping
all the others such as systems thinking,
design thinking, logical thinking,
scientific thinking, etc. This is computational
chauvinism. There is no basis
to claim that CT is more fundamental
than other kinds of thinking.
Von Peter Denning, Matti Tedre, Pat Yongpradit im Text Misconceptions About Computer Science (2017) Computational thinking is using heuristic reasoning
to discover a solution. It is planning, learning,
and scheduling in the presence of uncertainty. It is
search, search, and more search, resulting in a list of
Web pages, a strategy for winning a game, or a counterexample. Computational thinking is using massive
amounts of data to speed up computation. It is making
trade-offs between time and space and between
processing power and storage capacity.
Von Jeannette M. Wing im Text Computational Thinking (2006) Finally, it is worth noting that educators
have long promoted a large number
of different kinds of thinking: engineering
thinking, science thinking,
economics thinking, systems thinking,
logical thinking, rational thinking,
network thinking, ethical thinking,
design thinking, critical thinking,
and more. Each academic field claims
its own way of thinking. What makes
computational thinking better than
the multitude of other kinds of thinking?
I do not have an answer.
Von Peter Denning im Text Remaining Trouble Spots with Computational Thinking (2017) Programming should not, however, be essential in the
teaching of computational thinking, nor should knowledge
of programming be necessary to proclaim literacy in basic
computer science. Just as math students come to proofs after
12 or more years of experience with basic math, and
English students come to literary analysis after an even
longer period of reading and writing, programming should
begin for all students only after they have had substantial
practice thinking computationally.
Von James J. Lu, George H. L. Fletcher im Text Thinking about computational thinking (2009) Encouraged by funding programs from the NSF, the US
computer science community has readily adopted the term
computational thinking, using it as a slogan to re-design existing
computer science curricula to make them more attractive
to students, and to develop new courses aimed at audiences
who would not otherwise be exposed to computer science. For
example, the Computer Science Teachers Association (CSTA)
set up a task force to “explore and disseminate teaching and
learning resources related to computational thinking”.
Von Steve Easterbrook im Text From Computational Thinking to Systems Thinking (2014) Papert [47] is credited with introducing the term wanting “to integrate computational thinking into everyday life" (p. 182). Papert and others envisioned early on that computational ideas could serve as a tool for not only learning mathematics [16] but also a wide range of other subjects in new ways [1, 14, 62]. This general purpose application of computational thinking garnered much traction in bringing the first wave of computers into schools in the 1980’s but also generated considerable critique because of its lack of empirical evidence for transfer [49].
Von Yasmin B. Kafai, Chris Proctor, Debora Lui im Konferenz-Band ICER 2019 im Text From Theory Bias to Theory Dialogue (2019) auf Seite 102Computational thinking (CT) stems back to the constructionist work of Seymour Papert (Papert, 1980, 1991) and was first
coined as a term in a seminal article by Wing (2006). She explained that CT entails “solving problems, designing systems, and
understanding human behavior, by drawing on the concepts fundamental to computer science” (Wing, 2006, p. 33). As such,
it represents an ability to analyze and then solve various problems. Her arguments provided a fresh perspective on the relationship(
s) between humans and computers, and gave rise to a wave of research on CT.
Von Valerie J. Shute, Chen Sun, Jodi Asbell-Clarke im Text Demystifying computational thinking (2017) The computational thinker looks for problems that can be
tackled with computers. Immediately, this provides a selective
lens through which to view the world. Problems that are unlikely
to have computational solutions (e.g. ethical dilemmas,
value judgements, societal change, etc) are ignored. Others are
reduced to a simpler, computational proxy. It is no coincidence
that computer science students tend to be less morally mature
than students from other disciplines [17]. Ethical dilemmas
have no computational solutions, and so are overlooked when
peering through a CT lens.
Von Steve Easterbrook im Text From Computational Thinking to Systems Thinking (2014) Computational thinking (CT) is an old idea in CS, first
discussed by pioneers such as Alan
Perlis in the late 1950s.8 Perlis thought
“algorithmizing” would become part
of every field as computing moved in
to automate processes. Dijkstra recognized
he had learned new mental skills
while programming (1974). In his 1980
book Mindstorms, Papert was the first
to mention the term CT explicitly when
discussing the mental skills children
developed while programming in Logo.
Jeannette Wing catalyzed a discussion
about how people outside CS could
benefit from learning computing.
Von Peter Denning, Matti Tedre, Pat Yongpradit im Text Misconceptions About Computer Science (2017) At heart, CT is inherently reductionist. Computational problems
are tackled by reducing them to a set of discrete variables
that can be mapped onto abstract data types, and a set of
algorithmic steps for manipulating these data types. In the
process, multiple perspectives on the nature of the problem are
lost, as is any local, contingent knowledge about the problem
situation [18]. Computational thinking thus ignores the fact
that any particular expression of the “the problem to be solved”
is the result of an ongoing negotiation between the competing
needs of a variety of stakeholders [19], [20].
Von Steve Easterbrook im Text From Computational Thinking to Systems Thinking (2014) Wing (2006) argued that CT does not mean to think like a computer; but rather to engage in five cognitive processes with
the goal of solving problems efficiently and creatively. These include:
Von Valerie J. Shute, Chen Sun, Jodi Asbell-Clarke im Text Demystifying computational thinking (2017) - Problem reformulation - Reframe a problem into a solvable and familiar one.
- Recursion - Construct a system incrementally based on preceding information.
- Problem decomposition - Break the problem down into manageable units.
- Abstraction - Model the core aspects of complex problems or systems.
- Systematic testing - Take purposeful actions to derive solutions.
Although there are different efforts to define the term and there is no consensus on different definitions, there is a general
acceptance that CT skills cover the concepts of “abstraction, algorithmic thinking, problem-solving, decomposition, generalization,
and debugging” (Sarıtepeci & Durak, 2017). In support of this, Kalelioglu, Gülbahar and Kukul (2016) have formed a
word cloud in relation to the explanations about computational thinking in their work and have found that the data words
that are most used in terms of defining the process of computation thinking in the literature are “abstraction, problem,
solving, algorithmic and thinking.
Von Hatice Yildiz Durak, Mustafa Saritepeci im Text Analysis of the relation between computational thinking skills and various variables with the structural equation model (2017) The current computational thinking (CT) movement in computing education
began in 2006 when Jeannette Wing declared that “computational thinking
is a fundamental skill for everyone, not just for computer scientists” and that
“everyone can benefit from thinking like a computer scientist” (Wing, 2006,
2010). Her declaration came at a time when everything was being digitized and
people were finding themselves in a world where algorithms and computing
machines made many decisions that affected their work and their lives every
day. The unfamiliar logic of computing was bringing great benefits, such as
connectivity, along with great worries, such as loss of jobs to automation. Wing
called on educators to help everyone learn how computing works, how they
can harness it in their own lives, and when they can trust it.
Von Matti Tedre, Peter Denning im Buch Computational Thinking in Education (2021) im Text Computational Thinking Kurioserweise fragt keiner nach, was informatische Grundbildung bzw. informatisches
Denken bedeutet. Der englische Originalbegriff heißt Computational Thinking
und verkürzt das Denken auf Fragen der Berechenbarkeit. Alle Menschen sollen lernen
zu »denken« (funktionieren) wie ein Computer. Ein Computer aber ist eine Rechen-
bzw. eine Datenverarbeitungsmaschine.
[...]
Informatikunterricht fördert so eine spezifische Art von Problemlösungsstrategien,
die eine Aufgabe so lange in Teilaufgaben zerlegt, bis man diese Teilaufgaben mathematisch
beschreiben und einem Computer(-programm) zum Berechnen geben
kann. Dazu gehört, dass jede Teilaufgabe letztlich so systematisiert werden muss, dass
als Berechnungsergebnis ein eindeutiger (binärer) Wert herauskommt: Ja oder Nein,
Richtig oder Falsch, Eins oder Null. Binäre Logik ist in technischen Bereichen hilfreich,
verkürzt und trainiert aber ein Denken in Schwarz-Weiß-Schemata.
Von Ralf Lankau im Buch Autonom und mündig am Touchscreen (2021) im Text Einleitung Despite more than a half-century of research on how to teach computing in the school, teaching computing concepts to children remains a great challenge. It will keep computing education researchers busy for decades to come. We advocate that CT curriculum developers focus their attention to two things.
Von Peter Denning, Matti Tedre im Text Computational Thinking for Professionals (2021) - First, we advocate that teachers use computing's hard-earned hours in the K–12 curriculum to teach practices unique to our discipline, instead of rehashing generic brain puzzles, mathematics exercises, or perceptual reasoning problems. We are concerned that in the excited rush to develop CT curricula for schools, too many generic ideas may have been introduced at the cost of computing's own disciplinary concepts, ideas, skills, and practices. This ought to be changed.
- Second, we advocate that the public face of CT be expanded to cover the rich spectrum of CT insights from beginner to professional. One of computing's perennial challenges has been the public perception of the field as little more than coding. This image of computing is harmful because it does not show the public the vast range of activities people in computing do. We curate and clean data, train neural networks, and use them to make everyday things smart. We find ways to avoid network bottlenecks to get the full power of the world's biggest computing clusters to the fingertips of smartphone users, without them ever noticing any delay. We continuously seek clever heuristic ways to circumvent the limits of computing. We build software that creates virtual worlds that seamlessly fit social communities and their practices.
Verwandte Objeke
Verwandte Begriffe (co-word occurance) | Programmierenprogramming(0.04) |
CoautorInnenlandkarte
Relevante Personen
Alexander
Repenning
Repenning
Yasmin B.
Kafai
Kafai
Matti
Tedre
Tedre
Peter
Denning
Denning
Aman
Yadav
Yadav
Ashok R.
Basawapatna
Basawapatna
Augusto
Chioccariello
Chioccariello
Häufig erwähnende Personen
Alexander
Repenning
Repenning
Yasmin B.
Kafai
Kafai
Erik
Barendsen
Barendsen
Valentina
Dagienė
Dagienė
Quinn
Burke
Burke
Matti
Tedre
Tedre
Peter
Denning
Denning
Aman
Yadav
Yadav
Eric N.
Wiebe
Wiebe
Birgit
Eickelmann
Eickelmann
Gabrielė
Stupurienė
Stupurienė
Natasa
Grgurina
Grgurina
Ashok R.
Basawapatna
Basawapatna
Nicholas
Lytle
Lytle
Paul
Curzon
Curzon
Conrad
Wolfram
Wolfram
Tiffany
Barnes
Barnes
Amelie
Labusch
Labusch
Michael
Lodi
Lodi
Veronica
Cateté
Cateté
Kenny A.
Hunt
Hunt
David D.
Riley
Riley
Bernadette
Spieler
Spieler
Augusto
Chioccariello
Chioccariello
Shuchi
Grover
Grover
Häufig co-zitierte Personen
Jeannette M.
Wing
Wing
Alexander
Repenning
Repenning
Yasmin B.
Kafai
Kafai
Seymour
Papert
Papert
Aman
Yadav
Yadav
Mitchel
Resnick
Resnick
Peter
Denning
Denning
Kyu Han
Koh
Koh
Karen
Brennan
Brennan
Katja
Engelhardt
Engelhardt
Giuliana
Dettori
Dettori
Brian
Silverman
Silverman
Matti
Tedre
Tedre
Chen
Sun
Sun
Jodi
Asbell-Clarke
Asbell-Clarke
Augusto
Chioccariello
Chioccariello
Jay
Silver
Silver
Amon
Millner
Millner
Evelyn
Eastmond
Eastmond
Eric
Rosenbaum
Rosenbaum
Susanne E.
Hambrusch
Hambrusch
Ashok R.
Basawapatna
Basawapatna
Natalie
Rusk
Rusk
Andrés
Monroy-Hernández
Monroy-Hernández
Stefania
Bocconi
Bocconi
Valerie J.
Shute
Shute