Machine Learning and the Five Big Ideas in AIErstpublikation in: International Journal of Artificial Intelligence in Education, Volume 33, pages 233–266, (2023)
Publikationsdatum:
|
|
Dieses Biblionetz-Objekt existiert erst seit Januar 2025.
Es ist deshalb gut möglich, dass viele der eigentlich vorhandenen Vernetzungen zu älteren Biblionetz-Objekten bisher nicht erstellt wurden.
Somit kann es sein, dass diese Seite sehr lückenhaft ist.
Zusammenfassungen
This article provides an in-depth look at how K-12 students should be introduced
to Machine Learning and the knowledge and skills they will develop as a result.
We begin with an overview of the AI4K12 Initiative, which is developing national
guidelines for teaching AI in K-12, and briefly discuss each of the “Five Big Ideas in
AI” that serve as the organizing framework for the guidelines. We then discuss the
general format and structure of the guidelines and grade band progression charts and
provide a theoretical framework that highlights the developmental appropriateness
of the knowledge and skills we want to impart to students and the learning experiences
we expect them to engage in. Development of the guidelines is informed
by best practices from Learning Sciences and CS Education research, and by the
need for alignment with CSTA’s K-12 Computer Science Standards, Common Core
standards, and Next Generation Science Standards (NGSS). The remainder of the
article provides an in-depth exploration of the AI4K12 Big Idea 3 (Learning) grade
band progression chart to unpack the concepts we expect students to master at each
grade band. We present examples to illustrate the progressions from two perspectives:
horizontal (across grade bands) and vertical (across concepts for a given grade
band). Finally, we discuss how these guidelines can be used to create learning experiences
that make connections across the Five Big Ideas, and free online tools that
facilitate these experiences.
Von David Touretzky, Christina Gardner-McCune, Deborah Seehorn im Text Machine Learning and the Five Big Ideas in AI (2022) Dieser wissenschaftliche Zeitschriftenartikel erwähnt ...
Personen KB IB clear | Robbie Berg , Michael Eisenberg , Christina Gardner-McCune , Cindy E. Hmelo , Douglas L. Holton , Yasmin B. Kafai , Janet L. Kolodner , Fred Martin , Mitchel Resnick , Deborah W. Seehorn , Brian Silverman , David S. Touretzky | |||||||||||||||||||||||||||||||||||||||||||||
Begriffe KB IB clear | Bildungeducation (Bildung) , Informatikcomputer science , Informatik-Didaktikdidactics of computer science , Künstliche Intelligenz (KI / AI)artificial intelligence , machine learning | |||||||||||||||||||||||||||||||||||||||||||||
Bücher |
| |||||||||||||||||||||||||||||||||||||||||||||
Texte |
|
Dieser wissenschaftliche Zeitschriftenartikel erwähnt vermutlich nicht ...
Nicht erwähnte Begriffe | Informatik-Unterricht (Fachinformatik), Informatikunterricht in der Schule |
Tagcloud
Zitationsgraph
Zitationsgraph (Beta-Test mit vis.js)
3 Erwähnungen
- DELFI 2024 (Sandra Schulz, Natalie Kiesler) (2024)
- A project-based AI and Data Education Concept for STEM Teacher Education in Teaching-Learning-Labs (Moritz Kreinsen, Maimon Thiems, Sandra Sprenger, Sandra Schulz 0001) (2024)
- WIPSCE '24 (Tilman Michaeli, Sue Sentance, Nadine Bergner) (2024)
- Co-Designing AI literacy for K-12 Education (Linda Mannila) (2024)
- Was alle über Künstliche Intelligenz wissen sollen und wie KI-bezogene Kompetenzen in der Schule entwickelt werden können - Weiterführende Überlegungen zum GI-Positionspapier „Künstliche Intelligenz in der Bildung“ (Daniel Losch, Steffen Jaschke, Tilman Michaeli, Simone Opel, Ute Schmid, Stefan Seegerer, Peer Stechert) (2025)
Volltext dieses Dokuments
Machine Learning and the Five Big Ideas in AI: Artikel als Volltext ( : ) | |
Machine Learning and the Five Big Ideas in AI: Artikel als Volltext ( : ) |
Anderswo suchen
Beat und dieser wissenschaftliche Zeitschriftenartikel
Beat hat Dieser wissenschaftliche Zeitschriftenartikel erst in den letzten 6 Monaten in Biblionetz aufgenommen. Er hat Dieser wissenschaftliche Zeitschriftenartikel einmalig erfasst und bisher nicht mehr bearbeitet. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Es gibt bisher nur wenige Objekte im Biblionetz, die dieses Werk zitieren.