Watson
Definitionen
Im Februar 2011 wurde Geschichte geschrieben. Einem IBM-Computer namens Watson gelang, was viele Kritiker für unmöglich gehalten hatten: Er schlug zwei Kandidaten bei einer Fernseh-Quizshow namens Jeopardy («Gefahr»). Millionen amerikanischer Zuschauer saßen gebannt vor dem Bildschirm, als Watson seine Gegner methodisch ausschaltete, Fragen beantwortete, die seine Konkurrenten ratlos machten, und ein Preisgeld von 1 Million Dollar einstrich.
Von Michio Kaku im Buch Die Physik des Bewusstseins (2014) Watson is a supercomputer designed to play the popular game show Jeopardy!
in which contestants are asked questions on a wide variety of topics that
are not known in advance. In many cases, these questions involve puns and
other types of wordplay. It can be difficult to figure out precisely what
is being asked, or how an answer should be constructed. Playing Jeopardy!
Well, in short, requires the ability to engage in complex communication.
Von Erik Brynjolfsson, Andrew McAfee im Buch Race Against The Machine (2011) Artificial intelligence took a big leap into the future in 2011 when an IBM
computer, Watson—named after IBM’s past chairman—took on Ken Jennings, who
held the record of 74 wins on the popular TV show Jeopardy, and defeated
him. The showdown, which netted a $1 million prize for IBM, blew away TV
viewers as they watched their Jeopardy hero crumble in the presence of the
“all-knowing” Watson. Watson is a cognitive system that is able to
integrate “natural language processing, machine learning, and hypothesis
generation and evaluation,” says its proud IBM parent, allowing it to think
and respond to questions and problems.
Von Jeremy Rifkin im Buch The Zero Marginal Cost Society (2014) Millions of people witnessed the IBM computer named Watson play the
natural-language game of Jeopardy! and obtain a higher score than the best
two human players in the world combined. It should be noted that not only
did Watson read and “understand” the subtle language in the Jeopardy!
query (which includes such phenomena as puns and metaphors), but it
obtained the knowledge it needed to come up with a response from
understanding hundreds of millions of pages of natural-language documents
including Wikipedia and other encyclopedias on its own. It needed to master
virtually every area of human intellectual endeavor, including history,
science, literature, the arts, culture, and more.
Von Ray Kurzweil im Buch How to Create a Mind (2012) Bemerkungen
The fact that in 2011 Watson - IBM’s system capable of answering questions asked in natural language - won against ist human opponents when playing Jeopardy! Only shows that artefacts can be smart without being intelligent. Data miners do not need to be intelligent to be successful.
Von Luciano Floridi im Buch Die 4. Revolution (2014) Watson’s ability to intelligently master the knowledge in natural-language
documents is coming to a search engine near you, and soon. People are
already talking to their phones in natural language (via Siri, for example,
which was also contributed to by Nuance). These natural-language assistants
will rapidly become more intelligent as they utilize more of the
Watson-like methods and as Watson itself continues to improve.
Von Ray Kurzweil im Buch How to Create a Mind (2012) Die Datenbank von Watson, die aus
rund 200 Millionen Seiten von Dokumenten bestand, die vier Terabyte
Speicherplatz auf der Festplatte erforderten, schloss eine Komplettkopie
von Wikipedia ein. Eine Zeit lang war auch ein Exemplar des Urban
Dictionary enthalten, das auch derbe Ausdrucksweisen enthält, doch dieses
Archiv für nutzergenerierte Inhalte wurde wieder entfernt, weil Watson zum
Entsetzen seiner Schöpfer anfing, Schimpfwörter in seine Antworten
einzubauen.
Von Erik Brynjolfsson, Andrew McAfee im Buch Race Against The Machine (2011) Die Bearbeitung einer Suchanfrage und das Zusammentragen
nachgefragter Daten oder Information ist vergleichsweise simpel, doch
Antworten à la Jeopardy! geben, für die man kognitives Verhalten im Sinne
von »seinen Verstand benutzen, um ein kniffeliges Frageproblem zu lösen« an
den Tag legen muss, gestaltet sich erheblich schwieriger. Mit Watson hat
IBM einen großen Wurf getan – weg von der Suchmaschine hin zur
Antwortmaschine, zu jener Maschine, die einen Anflug von Bewusstsein zeigt.
Von Yvonne Hofstetter im Buch Sie wissen alles (2014) IBM’s plans for Watson go far beyond serving the specialized needs of the research industry and the back-office tasks of managing Big Data. Watson is being offered up in the marketplace as a personal assistant that companies and even consumers can converse with by typed text or in real-time spoken words. IBM says that this is the first time artificial intelligence is graduating from a simple question-and-answer mode to a conversational mode, allowing for more personal interaction and customized answers to individual queries.
Von Jeremy Rifkin im Buch The Zero Marginal Cost Society (2014) Watson for Oncology wurde weltweit vermarktet, um Therapien für Krebspatienten vorzuschlagen. Von M. D. Anderson, einem der angesehensten Krebszentren in den USA, bis zu den Manipal Hospitals in Indien kauften Krankhäuser die Dienstleistungen von Watson und bezahlten pro Patient zwischen 200 und 1000 Dollar. Doch Watson konnte noch nicht einmal die Leistung eines ordentlichen menschlichen Arztes abliefern, von einem Mondflug gar nicht zu reden. Viele Therapieempfehlungen des Programms erwiesen sich als falsch und einige als lebensgefährlich für die Patienten.
Von Gerd Gigerenzer im Buch Klick (2021) im Text Was KI am besten kann Some observers have argued that Watson
does not really “understand” the Jeopardy! queries or the encyclopedias it
has read because it is just engaging in “statistical analysis.” A key point
I will describe here is that the mathematical techniques that have evolved
in the field of artificial intelligence (such as those used in Watson and
Siri, the iPhone assistant) are mathematically very similar to the methods
that biology evolved in the form of the neocortex. If understanding
language and other phenomena through statistical analysis does not count as
true understanding, then humans have no understanding either.
Von Ray Kurzweil im Buch How to Create a Mind (2012) What comes out in the end is so fast and accurate that even the best human
Jeopardy! players simply can’t keep up. In February of 2011, Watson played
in a televised tournament against the two most accomplished human
contestants in the show’s history. After two rounds of the game shown over
three days, the computer finished with more than three times as much money
as its closest flesh-and-blood competitor. One of these competitors, Ken
Jennings, acknowledged that digital technologies had taken over the game of
Jeopardy! Underneath his written response to the tournament’s last
question, he added, “I for one welcome our new computer overlords.”
Von Erik Brynjolfsson, Andrew McAfee im Buch Race Against The Machine (2011) Verwandte Objeke
Verwandte Begriffe (co-word occurance) |
Häufig erwähnende Personen
Häufig co-zitierte Personen
Statistisches Begriffsnetz
Zitationsgraph
Zitationsgraph (Beta-Test mit vis.js)
Zeitleiste
44 Erwähnungen
- Smart Machines - IBM's Watson and the Era of Cognitive Computing (John Kelly, Steve Hamm)
- Everything Is Obvious - Once You Know the Answer (Duncan J. Watts) (2011)
- D is for Digital - What a well-informed person should know about computers and communications (Brian W. Kernighan) (2011)
- Final Jeopardy - Man vs. Machine and the Quest to Know Everything (Stephen Baker) (2011)
- NEXT - Erinnerungen an eine Zukunft ohne uns (Miriam Meckel) (2011)
- Race Against The Machine - How the Digital Revolution is Accelerating Innovation, Driving Productivity, and Irreversibly Transforming Employment and the Economy (Erik Brynjolfsson, Andrew McAfee) (2011)
- Automate This - How Algorithms Came to Rule Our World (Christopher Steiner) (2012)
- How to Create a Mind - The Secret of Human Thought Revealed (Ray Kurzweil) (2012)
- Predictive Analytics - The Power to Predict Who Will Click, Buy, Lie, or Die (Eric Siegel, Thomas H. Davenport) (2013)
- Denken 3.0 - Von der künstlichen Intelligenz zum digitalen Denken (Frank Schirrmacher) (2013)
- Big Data - A Revolution That Will Transform How We Live, Work and Think (Viktor Mayer-Schönberger, Kenneth Cukier) (2013)
- Flipping 2.0 - Practical Strategies for Flipping Your Class (2013)
- The Second Machine Age - Work, Progress, and Prosperity in a Time of Brilliant Technologies (Erik Brynjolfsson, Andrew McAfee) (2014)
- Our Final Invention - Artificial Intelligence and the End of the Human Era (James Barrat) (2014)
- Die 4. Revolution - Wie die Infosphäre unser Leben verändert (Luciano Floridi) (2014)
- Zero to One - Wie Innovation unsere Gesellschaft rettet (Peter Thiel, Blake Masters) (2014)
- Die Physik des Bewusstseins (Michio Kaku) (2014)
- The Zero Marginal Cost Society - The Internet of Things, the Collaborative Commons, and the Eclipse of Capitalism (Jeremy Rifkin) (2014)
- Sie wissen alles - Wie intelligente Maschinen in unser Leben eindringen und warum wir für unsere Freiheit kämpfen müssen (Yvonne Hofstetter) (2014)
- Rise of the Robots - Technology and the Threat of a Jobless Future (Martin Ford) (2015)
- The Master Algorithm - How the Quest for the Ultimate Learning Machine Will Remake Our World (Pedro Domingos) (2015)
- Superforcasting - The Art and Science of Prediction (Philip E. Tetlock, Dan Gardner) (2015)
- Cognitive Computing and Big Data Analytics (Judith S. Hurwitz, Marcia Kaufman, Adrian Bowles) (2015)
- Data-Ism - The Revolution Transforming Decision Making, Consumer Behavior, and Almost Everything Else (Steve Lohr) (2015)
- Die Herrschaftsformel - Wie Künstliche Intelligenz uns berechnet, steuert und unser Leben verändert (Kai Schlieter) (2015)
- Only Humans Need Apply - Winners and Losers in the Age of Smart Machines (Thomas H. Davenport, Julia Kirby) (2016)
- Wonderland - How Play Made the Modern World (Steven Johnson) (2016)
- The Inevitable - Understanding the 12 Technological Forces That Will Shape Our Future (Kevin Kelly) (2016)
- Smarte Maschinen - Wie künstliche Intelligenz unser Leben verändert (Ulrich Eberl) (2016)
- Mensch gegen Maschine (Markus Dettmer, Martin Hesse, Alexander Jung, Martin U. Müller, Thomas Schulz) (2016)
- Digitaler Deutschunterricht - Neue Medien produktiv einsetzen (Philippe Wampfler) (2017)
- 3. Projekte und Unterrichtsideen
- Machine Platform Crowd - Wie wir das Beste aus unserer digitalen Zukunft machen (Andrew McAfee, Erik Brynjolfsson) (2017)
- Life 3.0 - Being Human in the Age of Artificial Intelligence (Max Tegmark) (2017)
- The AI Advantage - How to Put the Artificial Intelligence Revolution to Work (Thomas H. Davenport) (2018)
- Assistenzarzt Watson hat elemantare Mängel (Walter Niederberger) (2018)
- Neuronale Denkfehler - Künstliche Intelligenz: zu naiv, um schlau zu sein (Schwerpunktthema c't 24/18) (2018)
- Irren ist künstlich - Wo künstliche Intelligenz noch schwächelt (Andrea Trinkwalder)
- Statistik ist nicht Denken - Wie sich künstliche Intelligenz von menschlicher unterscheidet (Pina Merkert)
- Human Compatible - Künstliche Intelligenz und wie der Mensch die Kontrolle über superintelligente Maschinen behält (Stuart Russell) (2020)
- The Myth Of Artificial Intelligence - Why Computers Can’t Think The Way We Do (Erik J. Larson) (2021)
- Klick - Wie wir in einer digitalen Welt die Kontrolle behalten und die richtigen Entscheidungen treffen (Gerd Gigerenzer) (2021)
- 2. Was KI am besten kann - Das Prinzip der stabilen Welt
- 5. Gesunder Menschenverstand und KI (2021)
- Unmasking AI (Joy Buolamwini) (2023)
- Generative AI and the Future of Work - A Reappraisal (Carl Benedikt Frey, Michael Osborne) (2024)
- AI Snake Oil - What Artificial Intelligence Can Do, What It Can’t, and How to Tell the Difference (Arvind Narayanan, Sayash Kapoor) (2024)