Zusammenfassungen
Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution.
Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; ist ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning--major trends, possible developments, and significant challenges.
Von Klappentext im Buch Deep Learning (2019) Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; ist ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning--major trends, possible developments, and significant challenges.
Dieses Buch erwähnt ...
Personen KB IB clear | Aidan N. Gomez , Geoffrey Hinton , Llion Jones , Lukasz Kaiser , Niki Parmar , Illia Polosukhin , Noam Shazeer , Jakob Uszkoreit , Ashish Vaswani | ||||||||||||||||||
Begriffe KB IB clear | AlexNet , Algorithmusalgorithm , AlphaGo , big databig data , Computercomputer , Datendata , deep learning , facebook , Generative Adversarial Network (GAN) , Google , Künstliche Intelligenz (KI / AI)artificial intelligence , Leib-Seele-Problem , Lernenlearning , Recurrent Neural Networks (RNN) , Spracherkennungvoice recognition | ||||||||||||||||||
Texte |
|
Dieses Buch erwähnt vermutlich nicht ...
Nicht erwähnte Begriffe | Digitalisierung, Intelligenz, Internet, Long / Short Term Memory (LSTM), Schule |
Tagcloud
Zitationsgraph
Zitationsgraph (Beta-Test mit vis.js)
1 Erwähnungen
- Mensch, Maschine, Identität - Ethik der Künstlichen Intelligenz (Orlando Budelacci) (2022)
Volltext dieses Dokuments
Anderswo suchen
Beat und dieses Buch
Beat hat dieses Buch während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Beat besitzt kein physisches, aber ein digitales Exemplar. (das er aber aus Urheberrechtsgründen nicht einfach weitergeben darf). Es gibt bisher nur wenige Objekte im Biblionetz, die dieses Werk zitieren.