Deep neural networks are more accurate than humans at detecting sexual orientation from facial imagesPreprint
Michal Kosinski, Yilun Wang
|
![]() |
Abstracts

We show that faces contain much more information about sexual orientation than can be perceived and interpreted by the human brain. We used deep neural networks to extract features from 35,326 facial images. These features were entered into a logistic regression aimed at classifying sexual orientation. Given a single facial image, a classifier could correctly distinguish between gay and heterosexual men in 81% of cases, and in 74% of cases for women. Human judges achieved much lower accuracy: 61% for men and 54% for women. The accuracy of the algorithm increased to 91% and 83%, respectively, given five facial images per person. Facial features employed by the classifier included both fixed (e.g., nose shape) and transient facial features (e.g., grooming style). Consistent with the prenatal hormone theory of sexual orientation, gay men and women tended to have gender-atypical facial morphology, expression, and grooming styles. Prediction models aimed at gender alone allowed for detecting gay males with 57% accuracy and gay females with 58% accuracy. Those findings advance our understanding of the origins of sexual orientation and the limits of human perception. Additionally, given that companies and governments are increasingly using computer vision algorithms to detect people’s intimate traits, our findings expose a threat to the privacy and safety of gay men and women.
From Michal Kosinski, Yilun Wang in the text Deep neural networks are more accurate than humans at detecting sexual orientation from facial images
Comments

This scientific journal article mentions...
Tagcloud
Postings in Beats Weblog
Citation Graph
Citation Graph(Beta-Test mit vis.js)
9 References 
- Der Vermesser der Seele (Christina Berndt) (2018)
- The Fourth Education Revolution (Anthony Seldon, Oladimeji Abidoye) (2018)
- Die Daten, die ich rief - Wie wir unsere Freiheit an Großkonzerne verkaufen (Katharina Nocun) (2018)
- Diskriminierungsrisiken durch Verwendung von Algorithmen - Eine Studie, erstellt mit einer Zuwendung der Antidiskriminierungsstelle des Bundes. (Carsten Orwat) (2019)
- Calling Bullshit - The Art of Skepticism in a Data-Driven World (Carl T. Bergstrom, Jevin D. West) (2020)
- The Fourth Education Revolution Reconsidered - Will Artificial Intelligence Liberate Or Infantilise Humanity (Anthony Seldon, Oladimeji Abidoye, Timothy Metcalf) (2020)
- The Atlas of AI (Kate Crawford) (2021)
- Digital ist besser?! - Psychologie der Online- und Mobilkommunikation (Markus Appel, Fabian Hutmacher, Christoph Mengelkamp, Jan-Philipp Stein, Silvana Weber) (2023)
- Identität und Selbst (Markus Appel, Silvana Weber)
- Identität und Selbst (Markus Appel, Silvana Weber)
- Momente der Datafizierung (Markus Unternährer) (2024)
Fulltext of this document
![]() | ![]() ![]() ![]() ![]() ![]() |
Search at other places 
Beat and dieser wissenschaftliche Zeitschriftenartikel
Beat hat Dieser wissenschaftliche Zeitschriftenartikel während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Beat hat Dieser wissenschaftliche Zeitschriftenartikel auch schon in Blogpostings erwähnt.
Biblionetz-History 
default1
default2
default3
default2
default3