Dieses Biblionetz-Objekt existiert erst seit Januar 2026.
Es ist deshalb gut möglich, dass viele der eigentlich vorhandenen Vernetzungen zu älteren Biblionetz-Objekten bisher nicht erstellt wurden.
Somit kann es sein, dass diese Seite sehr lückenhaft ist.
Zusammenfassungen
Introduction
Generative AI is reshaping programming education, yet its effects on conceptual learning, intrinsic motivation, and cognitive load remain unclear. This study tests whether assistance deepens understanding or mainly boosts task completion, and how scaffolded versus answer-giving designs matter.
Objectives
This study compares performance, learning, cognitive load, frustration, and motivation across three AI support types, and examines students’ tool perceptions.
Methods
A three-arm randomized controlled trial was conducted in an introductory programming (CS1) course at TUM (N=275). Participants completed a 90-minute exercise on concurrency, implementing a parallel sum with threading in one of three conditions: (1) Iris, a scaffolded tutor providing calibrated hints while withholding full solutions; (2) ChatGPT, unrestricted assistance that can provide complete solutions; (3) no-AI control using traditional web resources. Pre- and post-knowledge tests and a code comprehension task measured learning, while auto-graded test coverage measured performance. Validated scales captured intrinsic, germane, and extraneous cognitive load, frustration, and intrinsic motivation.
Results
Both AI groups achieved substantially higher exercise scores than the control group, with distinct distributions: ChatGPT users clustered at high scores, control participants at low scores, and Iris users spread across the full range. Despite these performance gains, neither AI condition produced greater pre–post knowledge gains or code-comprehension advantages. Both AI groups reported lower frustration and reduced extraneous and germane load than the control group, while intrinsic load did not differ. Only Iris increased intrinsic motivation. Students rated ChatGPT as easier to use and more helpful.
Conclusion
In this setting, generative AI acted primarily as a performance aid rather than a learning enhancer. Scaffolded, hint-first design preserved motivational benefits, whereas AI providing unrestricted solutions encouraged a “comfort trap” where students’ preferences misalign with pedagogical effectiveness. These findings motivate scaffolded AI integration and assessment designs resilient to environments where performance no longer reliably tracks understanding.
Dieser wissenschaftliche Zeitschriftenartikel erwähnt ...
![]() Personen KB IB clear | Maria Bannert , Hamsa Bastani , Osbert Bastani , Jacob Cohen , Daryna Dementieva , Frank Fischer , Urs Gasser , Haosen Ge , Georg Groh , Stephan Günnemann , Eyke Hüllermeier , Özge Kabakcı , Gjergji Kasneci , Enkelejda Kasneci , Stephan Krusche , Stefan Küchemann , Jochen Kuhn , Gitta Kutyniok , Rei Mariman , Tilman Michaeli , Claudia Nerdel , Jürgen Pfeffer , Oleksandra Poquet , Michael Sailer , Albrecht Schmidt , Tina Seidel , Kathrin Sessler , Matthias Stadler , Alp Sungu , Lew Semjonowitsch Vygotsky , Jochen Weller | |||||||||||||||||||||||||||
![]() Aussagen KB IB clear | Programmieren ist schwierig | |||||||||||||||||||||||||||
![]() Begriffe KB IB clear | Chat-GPT
, Generative Machine-Learning-Systeme (GMLS) computer-generated text
, Lernen learning
, Motivation motivation
, Programmieren programming
| |||||||||||||||||||||||||||
![]() Bücher |
| |||||||||||||||||||||||||||
![]() Texte |
|
Dieser wissenschaftliche Zeitschriftenartikel erwähnt vermutlich nicht ... 
![]() Nicht erwähnte Begriffe | Generative Pretrained Transformer 3 (GPT-3), Generative Pretrained Transformer 4 (GPT-4), GMLS & Bildung, GMLS & Schule, Künstliche Intelligenz (KI / AI) |
Tagcloud
Zitationsgraph
Zitationsgraph (Beta-Test mit vis.js)
Anderswo finden
Volltext dieses Dokuments
![]() | Less stress, better scores, same learning: Artikel als Volltext ( : , 2758 kByte; : ) |
Anderswo suchen 
Beat und dieser wissenschaftliche Zeitschriftenartikel
Beat hat Dieser wissenschaftliche Zeitschriftenartikel erst in den letzten 6 Monaten in Biblionetz aufgenommen. Er hat Dieser wissenschaftliche Zeitschriftenartikel einmalig erfasst und bisher nicht mehr bearbeitet. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Es gibt bisher nur wenige Objekte im Biblionetz, die dieses Werk zitieren.


Chat-GPT
Generative Machine-Learning-Systeme (GMLS)
Lernen
Motivation
Programmieren




, 2758 kByte;
)
Biblionetz-History