/ en / Traditional / help

Beats Biblionetz - Texte

Challenging systematic prejudices

An Investigation into Bias Against Women and Girls in Large Language Models
Publikationsdatum:
Erste Seite des Textes (PDF-Thumbnail)
Dieses Biblionetz-Objekt existiert erst seit Juli 2024. Es ist deshalb gut möglich, dass viele der eigentlich vorhandenen Vernetzungen zu älteren Biblionetz-Objekten bisher nicht erstellt wurden. Somit kann es sein, dass diese Seite sehr lückenhaft ist.

iconZusammenfassungen

UNESCO United Nations Educational, Scientific and Cultural Org.This study explores biases in three significant large language models (LLMs): OpenAI’s GPT-2 and ChatGPT, along with Meta’s Llama 2, highlighting their role in both advanced decision-making systems and as user-facing conversational agents. Across multiple studies, the brief reveals how biases emerge in the text generated by LLMs, through gendered word associations, positive or negative regard for gendered subjects, or diversity in text generated by gender and culture.
The research uncovers persistent social biases within these state-of-the-art language models, despite ongoing efforts to mitigate such issues. The findings underscore the critical need for continuous research and policy intervention to address the biases that exacerbate as these technologies are integrated across diverse societal and cultural landscapes. The emphasis on GPT-2 and Llama 2 being open-source foundational models is particularly noteworthy, as their widespread adoption underlines the urgent need for scalable, objective methods to assess and correct biases, ensuring fairness in AI systems globally.
Von UNESCO United Nations Educational, Scientific and Cultural Org. im Text Challenging systematic prejudices (2024)

iconDieser Text erwähnt ...


Aussagen
KB IB clear
Machine Learning kann bestehende Vorurteile/Ungerechtigkeiten verstärken/weitertragen

Begriffe
KB IB clear
bias , Chat-GPT , GenderGender , Generative Machine-Learning-Systeme (GMLS)computer-generated text , GPT-2

iconDieser Text erwähnt vermutlich nicht ... Eine statistisch erstelle Liste von nicht erwähnten (oder zumindest nicht erfassten) Begriffen, die aufgrund der erwähnten Begriffe eine hohe Wahrscheinlichkeit aufweisen, erwähnt zu werden.

iconTagcloud

iconVolltext dieses Dokuments

Auf dem WWW Challenging systematic prejudices: Artikel als Volltext (lokal: PDF, 3143 kByte; WWW: Link OK )

iconAnderswo suchen  Auch im Biblionetz finden Sie nicht alles. Aus diesem Grund bietet das Biblionetz bereits ausgefüllte Suchformulare für verschiedene Suchdienste an. Biblionetztreffer werden dabei ausgeschlossen.

iconBeat und dieser Text

Beat hat Dieser Text erst in den letzten 6 Monaten in Biblionetz aufgenommen. Er hat Dieser Text einmalig erfasst und bisher nicht mehr bearbeitet. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Aufgrund der wenigen Einträge im Biblionetz scheint er es nicht wirklich gelesen zu haben. Es gibt bisher auch nur wenige Objekte im Biblionetz, die dieses Werk zitieren.

iconBiblionetz-History Dies ist eine graphische Darstellung, wann wie viele Verweise von und zu diesem Objekt ins Biblionetz eingetragen wurden und wie oft die Seite abgerufen wurde.