Trace-SRLA Framework for Analysis of Microlevel Processes of Self-Regulated Learning From Trace Data
John Saint, Alexander Whitelock-Wainwright, Dragan Gasevic, Abelardo Pardo
Publikationsdatum:
|
|
Zusammenfassungen
The recent focus on learning analytics (LA) to analyze
temporal dimensions of learning holds the promise of providing
insights into latent constructs, such as learning strategy, selfregulated learning (SRL), and metacognition. These methods seek
to provide an enriched view of learner behaviors beyond the scope
of commonly used correlational or cross-sectional methods. In this
article, we present a methodological sequence of techniques that
comprises: 1) the strategic clustering of learner types; 2) the use of
microlevel processing to transform raw trace data into SRL
processes; and 3) the use of a novel process mining algorithm to
explore the generated SRL processes. We call this the “Trace-SRL”
framework. Through this framework, we explored the use of
microlevel process analysis and process mining (PM) techniques to
identify optimal and suboptimal traits of SRL. We analyzed trace
data collected from online activities of a sample of nearly 300
computer engineering undergraduate students enrolled on a course
that followed a flipped class-room pedagogy. We found that using a
theory-driven approach to PM, a detailed account of SRL processes
emerged, which could not be obtained from frequency measures
alone. PM, as a means of learner pattern discovery, promises a
more temporally nuanced analysis of SRL. Moreover, the results
showed that more successful students regularly engage in a higher
number of SRL behaviors than their less successful counterparts.
This suggests that not all students are sufficiently able to regulate
their learning, which is an important finding for both theory and
LA, and future technologies that support SRL.
Von John Saint, Alexander Whitelock-Wainwright, Dragan Gasevic, Abelardo Pardo im Text Trace-SRL (2020) Dieser wissenschaftliche Zeitschriftenartikel erwähnt ...
Begriffe KB IB clear | Algorithmusalgorithm , Computercomputer , learning analyticslearning analytics , Lernenlearning , Metakognitionmetacognition , Selbstreguliertes Lernen , Theorietheory |
Dieser wissenschaftliche Zeitschriftenartikel erwähnt vermutlich nicht ...
Nicht erwähnte Begriffe | Schule |
Zitationsgraph (Beta-Test mit vis.js)
1 Erwähnungen
- Beware of metacognitive laziness - Effects of generative artificial intelligence on learning motivation, processes, and performance (Yizhou Fan, Luzhen Tang, Huixiao Le, Kejie Shen, Shufang Tan, Yueying Zhao, Yuan Shen, Xinyu Li, Dragan Gašević) (2024)
Volltext dieses Dokuments
Trace-SRL: Artikel als Volltext (: , 3920 kByte; : ) |
Anderswo suchen
Beat und dieser wissenschaftliche Zeitschriftenartikel
Beat hat Dieser wissenschaftliche Zeitschriftenartikel während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Aufgrund der wenigen Einträge im Biblionetz scheint er es nicht wirklich gelesen zu haben. Es gibt bisher auch nur wenige Objekte im Biblionetz, die dieses Werk zitieren.