Automatentheorie und formale SprachenZu finden in: Grundkurs Informatik (Seite 371 bis 414), 2015
|
|
Zusammenfassungen
Unter einem Automaten (automaton) stellt man sich eine Maschine vor, die ihr Verhalten bis zu einem gewissen Grade selbst steuert [Hop11]. Dies könnte beispielsweise ein Kaffeeautomat sein, der in Abhängigkeit von der Produktauswahl durch Drücken von Tasten das gewählte Getränk ausgibt oder auch eine Fehlermeldung, falls der Wasser- oder Kaffeevorrat ausgegangen ist. Für wissenschaftliche Anwendungen ist eine mathematische Präzisierung dieses Begriffs erforderlich. Historisch gesehen entwickelte sich die Automatentheorie um das Verhalten von Relaisschaltungen, allgemeiner von Schaltnetzen und Schaltwerken, abstrakt zu beschreiben. Wie in Kap. 5.3 dargestellt, lässt sich ein Schaltwerk als ein Schaltnetz mit Rückkopplungen und Verzögerungen beschreiben, wohingegen Schaltnetze idealisiert als rückkopplungs- und verzögerungsfrei betrachtet werden (vgl. Abb. 10.1).Weiter abstrahierend stellt man sich alle Eingangsvariablen als Eingabezeichen, alle Ausgangsvariablen als Ausgabezeichen und die Funktionen des Schaltnetzes, ggf. mit Rückkopplungen, als interne Zustände vor. Automaten sind damit eine alternative Beschreibung von Schaltwerken, wobei man meist von einer endlichen und festen Anzahl von Zuständen und einem Speicher mit vorab bestimmter, fester Kapazität ausgeht - was eine wesentliche Einschränkung ist.
Dieses Kapitel erwähnt ...
Begriffe KB IB clear | Automatautomat , Rückkopplung / Regelkreisfeedback loop , Sprachelanguage , Theorietheory |
Dieses Kapitel erwähnt vermutlich nicht ...
Nicht erwähnte Begriffe | Negative Rückkoppelung, Positive Rückkoppelung / Teufelskreis |
Anderswo finden
Volltext dieses Dokuments
Automatentheorie und formale Sprachen: Artikel als Volltext bei Springerlink (: , 555 kByte; : 2020-11-28) |
Anderswo suchen
Beat und dieses Kapitel
Beat hat Dieses Kapitel während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Er hat Dieses Kapitel einmalig erfasst und bisher nicht mehr bearbeitet. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Aufgrund der wenigen Einträge im Biblionetz scheint er es nicht wirklich gelesen zu haben. Es gibt bisher auch nur wenige Objekte im Biblionetz, die dieses Werk zitieren.