Understanding United States anti-discrimination lawSolon Barocas, Moritz Hardt, Arvind Narayanan
Zu finden in: Fairness and Machine Learning, 2023
|
|
Dieses Biblionetz-Objekt existiert erst seit Juli 2024.
Es ist deshalb gut möglich, dass viele der eigentlich vorhandenen Vernetzungen zu älteren Biblionetz-Objekten bisher nicht erstellt wurden.
Somit kann es sein, dass diese Seite sehr lückenhaft ist.
Zusammenfassungen
We discuss what United States anti-discrimination law is and isn’t, how it navigates tradeoffs, its limits, and how it applies to machine learning.
Von Solon Barocas, Moritz Hardt, Arvind Narayanan im Buch Fairness and Machine Learning (2023) im Text Understanding United States anti-discrimination law In this chapter, we hope to give you an appreciation of what United States
anti-discrimination law is and isn’t. We’ll use the U.S. legal experience as a case
study of how to regulate discrimination. Other countries take different approaches.
We don’t aim to describe U.S. law comprehensively but rather give a stylized
description of the key concepts.
We’ll start with a history of how the major civil rights statutes came to be, and draw lessons from this history that continue to be relevant today. Law represents one attempt to operationalize moral notions. It is an important and illustrative one. We will learn from the way in which the law navigates many tricky tradeoffs. But we will also study ist limitations and explain why we think algorithmic fairness shouldn’t stop at legal compliance.
The final section addresses the specifics of regulating machine learning. Although U.S. antidiscrimination law predates the widespread use of machine learning, it is just as applicable if a decision maker uses machine learning or other statistical techniques. That said, machine learning introduces many complications to the application of these laws, and existing law may be inadequate to address some types of discrimination that arise when machine learning is involved. At the same time, we believe that there is also an opportunity to exercise new regulatory tools to rein in algorithmic discrimination.
Von Solon Barocas, Moritz Hardt, Arvind Narayanan im Buch Fairness and Machine Learning (2023) im Text Understanding United States anti-discrimination law We’ll start with a history of how the major civil rights statutes came to be, and draw lessons from this history that continue to be relevant today. Law represents one attempt to operationalize moral notions. It is an important and illustrative one. We will learn from the way in which the law navigates many tricky tradeoffs. But we will also study ist limitations and explain why we think algorithmic fairness shouldn’t stop at legal compliance.
The final section addresses the specifics of regulating machine learning. Although U.S. antidiscrimination law predates the widespread use of machine learning, it is just as applicable if a decision maker uses machine learning or other statistical techniques. That said, machine learning introduces many complications to the application of these laws, and existing law may be inadequate to address some types of discrimination that arise when machine learning is involved. At the same time, we believe that there is also an opportunity to exercise new regulatory tools to rein in algorithmic discrimination.
Dieses Kapitel erwähnt ...
Begriffe KB IB clear | Algorithmusalgorithm , disparate impact , GenderGender , machine learning , Moral , Religionreligion , Roe v. Wade |
Volltext dieses Dokuments
Understanding United States anti-discrimination law: Artikel als Volltext (: , 211 kByte; : ) |
Anderswo suchen
Beat und dieses Kapitel
Beat hat Dieses Kapitel erst in den letzten 6 Monaten in Biblionetz aufgenommen. Er hat Dieses Kapitel einmalig erfasst und bisher nicht mehr bearbeitet. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Aufgrund der wenigen Einträge im Biblionetz scheint er es nicht wirklich gelesen zu haben. Es gibt bisher auch nur wenige Objekte im Biblionetz, die dieses Werk zitieren.