/ en / Traditional / mobile

Beats Biblionetz - Texte

Successes and Failures in Building Learning Environments to Promote Deep Learning

The Value of Conversational Agents
Arthur C. Graesser, Anne M. Lippert, Andrew J. Hampton
Zu finden in: Informational Environments (Seite 273 bis 298), 2017    
Erste Seite des Textes (PDF-Thumbnail)
Diese Seite wurde seit mehr als 7 Monaten inhaltlich nicht mehr aktualisiert. Unter Umständen ist sie nicht mehr aktuell.

iconZusammenfassungen

Chap. 12 (Graesser, Lippert, & Hampton, 2017) provides insights into the most literal implementation of systems that provide a teacher-like social interaction between learner and technology. This chapter focuses on conversational agents that have the capability to engage in natural language dialogues with a learner and/or other agents. In particular, it provides several examples of conversational agents who effectively support the development of so-called deeper learning. For instance, conversational agents can improve learners’ abilities to ask “deep” questions (cognitive perspective), the ability to deal with cognitive conflict and disagreements (motivational-affective perspective), or the ability to solve a problem collaboratively (social-interactive perspective).
Von Jürgen Buder, Friedrich W. Hesse im Buch Informational Environments (2017) im Text Informational Environments
This chapter describes some attempts to promote deep learning (as opposed to shallow learning) through conversational pedagogical agents. Learning environments with agents have been developed to serve as substitutes for humans who range in expertise from novices to experts. For example, AutoTutor helps students learn by holding a dialogue in natural language with the student, whereas trialogues have two agents interacting with the student in a three-way interaction. Agents can guide the interaction with the learner, instruct the learner what to do, and interact with other agents to model ideal behavior, strategies, reflections, and social interactions. Some agents generate speech, gestures, body movements, and facial expressions in ways similar to people. These agent-based systems have sometimes facilitated deep learning more than conventional learning environments. Agents have shown learning gains on a variety of subject matters and skills, including science, technology, engineering, mathematics, research methods, metacognition, and language comprehension. Learning environments are currently being developed to improve lifelong learning and collaborative problem solving.
Von Arthur C. Graesser, Anne M. Lippert, Andrew J. Hampton im Buch Informational Environments (2017) im Text Successes and Failures in Building Learning Environments to Promote Deep Learning

iconAnderswo finden

icon

iconVolltext dieses Dokuments

iconAnderswo suchen Auch im Biblionetz finden Sie nicht alles. Aus diesem Grund bietet das Biblionetz bereits ausgefüllte Suchformulare für verschiedene Suchdienste an. Biblionetztreffer werden dabei ausgeschlossen.

iconBiblionetz-History Dies ist eine graphische Darstellung, wann wie viele Verweise von und zu diesem Objekt ins Biblionetz eingetragen wurden und wie oft die Seite abgerufen wurde.