/ en / Traditional / mobile

Beats Biblionetz - Texte

A fast measure for identifying at-risk students in computer science

Nickolas J. G. Falkner, Katrina E. Falkner
Publikationsdatum:
Zu finden in: ICER 2012 (Seite 55 bis 62), 2012
Erste Seite des Textes (PDF-Thumbnail)

iconZusammenfassungen

How do we identify students who are at risk of failing our courses? Waiting to accumulate sufficient assessed work incurs a substantial lag in identifying students who need assistance. We want to provide students with support and guidance as soon as possible to reduce the risk of failure or disengagement. In small classes we can monitor students more directly and mark graded assessments to provide feedback in a relatively short time but large class sizes, where it is most easy for students to disappear and ultimately drop out, pose a much greater challenge. We need reliable and scalable mechanisms for identifying at-risk students as quickly as possible, before they disengage, drop out or fail. The volumes of student information retained in data warehouse and business intelligence systems are often not available to lecturing staff, who can only observe the course-level marks for previous study and participation behaviour in the current course, based on attendance and assignment submission.

We have identified a measure of ``at-risk'' behaviour that depends upon the timeliness of initial submissions of any marked activity. By analysing four years of electronic submissions over our school's student body we have extracted over 220,000 individual records, spanning over 1900 students, to establish that early electronic submission behaviour provides can provide a reliable indicator of future behaviour. By measuring the impact on a student's Grade Point Average (GPA) we can show that knowledge of assignment submission and current course level provides a reliable guide to student performance.

Von Nickolas J. G. Falkner, Katrina E. Falkner im Konferenz-Band ICER 2012 im Text A fast measure for identifying at-risk students in computer science (2012)

iconAnderswo finden

icon

iconVolltext dieses Dokuments

LokalAuf dem WWW A fast measure for identifying at-risk students in computer science: Fulltext at the ACM Digital Library (lokal: PDF, 2093 kByte; WWW: Link OK 2017-06-28)

iconAnderswo suchen Auch im Biblionetz finden Sie nicht alles. Aus diesem Grund bietet das Biblionetz bereits ausgefüllte Suchformulare für verschiedene Suchdienste an. Biblionetztreffer werden dabei ausgeschlossen.

iconBiblionetz-History Dies ist eine graphische Darstellung, wann wie viele Verweise von und zu diesem Objekt ins Biblionetz eingetragen wurden und wie oft die Seite abgerufen wurde.

Verweise auf dieses Konferenz-Paper 1
Verweise von diesem Konferenz-Paper 1
Webzugriffe auf dieses Konferenz-Paper 121
20162017