Knowledge transformations in agents and interactionsa comparison of machine learning and dialogue operators
Zu finden in: Collaborative Learning, 1999
|
|
Diese Seite wurde seit 17 Jahren inhaltlich nicht mehr aktualisiert.
Unter Umständen ist sie nicht mehr aktuell.
Zusammenfassungen
In chapter 7, Mephu-Nguifo, Dillenbourg and Baker address this issue at the computational
level, by comparing the operators used to model the co-construction of knowledge through
dialogue and those used in machine-learning research to model individual learning.. Both sets
of operators are rather similar at the knowledge level: for instance 'generalisation' can
describe both the relation between two knowledge states during learning or the relationship
between the semantic contents of two utterances in dialogue. However, this similarity does
not extend to the strategy level: for instance, a dialogue strategy operator may be something
like 'lying to check one's partner's agreement', while a learning operators would be 'focus on
near-miss counter-examples'.
Von Pierre Dillenbourg im Buch Collaborative Learning (1999) im Text What do you mean by 'collaborative learning'? auf Seite 3This paper addresses the problem of understanding the mechanisms by
which learning takes place as a result of collaboration between agents. We
compare dialogue operators and machine learning operators with a view to
understanding how the knowledge that is co-constructed in dialogue can be
learned in an individual agent. Machine Learning operators make knowledge
changes in a knowledge space; dialogue operators are used to represent the
way in which knowledge can be co-constructed in dialogue. We describe the
degree of overlap between both sets of operators, by applying learning
operators to an example of dialogue. We review several differences between
these two sets of operators: the number of agents, the coverage of strategical
aspects and the distance between what one says or hears and what one
knows. We discuss the interest of fusing dialogue and learning operators in
the case of person-machine cooperative learning and multi-agent learning
systems.
Von E. Mephu Nguifo, M. J. Baker, Pierre Dillenbourg im Text Knowledge transformations in agents and interactions Dieser Text erwähnt ...
Volltext dieses Dokuments
Knowledge transformations in agents and interactions: Artikel als Volltext (: , 87 kByte; : 2021-03-21) |
Anderswo suchen
Beat und dieser Text
Beat war Co-Leiter des ICT-Kompetenzzentrums TOP während er Dieser Text ins Biblionetz aufgenommen hat. Die bisher letzte Bearbeitung erfolgte während seiner Zeit am Institut für Medien und Schule. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Aufgrund der wenigen Einträge im Biblionetz scheint er es nicht wirklich gelesen zu haben. Es gibt bisher auch nur wenige Objekte im Biblionetz, die dieses Werk zitieren.