/ en / Traditional / help

Beats Biblionetz - Texte

Deep neural networks are more accurate than humans at detecting sexual orientation from facial images

Preprint
Michal Kosinski, Yilun Wang
Erste Seite des Textes (PDF-Thumbnail)

iconZusammenfassungen

Calling BullshitThe Economist and Guardian stories described a research paper in which Stanford University researchers Yilun Wang and Michal Kosinski trained a deep neural network to predict whether someone was straight or gay by looking at their photograph. Wang and Kosinski collected a set of training images from an Internet dating website, photos of nearly eight thousand men and nearly seven thousand women, evenly split between straight and gay. The researchers used standard computer vision techniques for processing the facial images. When given pictures of two people, one straight and the other gay, the algorithm did better than chance at guessing which was which. It also did better than humans charged with the same task.
Von Carl T. Bergstrom, Jevin D. West im Buch Calling Bullshit (2020) im Text Calling Bullshit on Big Data
We show that faces contain much more information about sexual orientation than can be perceived and interpreted by the human brain. We used deep neural networks to extract features from 35,326 facial images. These features were entered into a logistic regression aimed at classifying sexual orientation. Given a single facial image, a classifier could correctly distinguish between gay and heterosexual men in 81% of cases, and in 74% of cases for women. Human judges achieved much lower accuracy: 61% for men and 54% for women. The accuracy of the algorithm increased to 91% and 83%, respectively, given five facial images per person. Facial features employed by the classifier included both fixed (e.g., nose shape) and transient facial features (e.g., grooming style). Consistent with the prenatal hormone theory of sexual orientation, gay men and women tended to have gender-atypical facial morphology, expression, and grooming styles. Prediction models aimed at gender alone allowed for detecting gay males with 57% accuracy and gay females with 58% accuracy. Those findings advance our understanding of the origins of sexual orientation and the limits of human perception. Additionally, given that companies and governments are increasingly using computer vision algorithms to detect people’s intimate traits, our findings expose a threat to the privacy and safety of gay men and women.
Von Michal Kosinski, Yilun Wang im Text Deep neural networks are more accurate than humans at detecting sexual orientation from facial images

iconBemerkungen

Calling BullshitAll we really know is that a deep neural net can draw a distinction between self-selected photos of these two groups for reasons that we don’t really understand. Any number of factors could be involved in the variation of these facial shapes, ranging from grooming to attire to photo choice to lighting. At the very least, the authors would need to show a statistically significant difference between face shapes. They fail to do even this.
Von Carl T. Bergstrom, Jevin D. West im Buch Calling Bullshit (2020) im Text Calling Bullshit on Big Data

iconDieser wissenschaftliche Zeitschriftenartikel erwähnt ...


Begriffe
KB IB clear
Algorithmusalgorithm , big databig data , Computercomputer , deep learning , Gesichtserkennungface recognition , Hormon , Intelligenzintelligence , Künstliche Intelligenz (KI / AI)artificial intelligence , Neuronales Netzneural network , Regression

iconTagcloud

iconEinträge in Beats Blog

iconZitationsgraph

Diese Grafik ist nur im SVG-Format verfügbar. Dieses Format wird vom verwendeteten Browser offenbar nicht unterstützt.

Diese SVG-Grafik fensterfüllend anzeigen

iconZitationsgraph (Beta-Test mit vis.js)

iconErwähnungen  Dies ist eine nach Erscheinungsjahr geordnete Liste aller im Biblionetz vorhandenen Werke, die das ausgewählte Thema behandeln.

iconVolltext dieses Dokuments

iconAnderswo suchen  Auch im Biblionetz finden Sie nicht alles. Aus diesem Grund bietet das Biblionetz bereits ausgefüllte Suchformulare für verschiedene Suchdienste an. Biblionetztreffer werden dabei ausgeschlossen.

iconBeat und dieser wissenschaftliche Zeitschriftenartikel

Beat hat Dieser wissenschaftliche Zeitschriftenartikel während seiner Zeit am Institut für Medien und Schule (IMS) ins Biblionetz aufgenommen. Beat besitzt kein physisches, aber ein digitales Exemplar. Eine digitale Version ist auf dem Internet verfügbar (s.o.). Beat hat Dieser wissenschaftliche Zeitschriftenartikel auch schon in Blogpostings erwähnt.

iconBiblionetz-History Dies ist eine graphische Darstellung, wann wie viele Verweise von und zu diesem Objekt ins Biblionetz eingetragen wurden und wie oft die Seite abgerufen wurde.