Informatik = eine Art Mathematik
Diese Seite wurde seit 2 Jahren inhaltlich nicht mehr aktualisiert.
Unter Umständen ist sie nicht mehr aktuell.
Definitionen
Computing as mathematics and logic: Computers are logic machines, some of
the most impressive achievements in computing are proven and presented in the
language of mathematics. Large parts of computing studies use formal objects
such as algorithms and models of computing.
Von Matti Tedre im Buch Computer Science Education im Text The Nature of Computing as a Discipline (2018) Key concept: Computing as mathematics
and logic
Computers are logic machines. Some of the most impressive achievements in computing are proven and presented using the language of mathematics and many mathematical structures like matrices, vectors and graphs have become standard computing concepts. Large parts of computing studies formal objects, such as algorithms and models of computing. Many questions of computing are best solved using mathematics and logic as tools. School curriculum recommendations have acknowledged the tight connection between computational, mathematical and logical thinking.
Von Matti Tedre im Buch Computer Science Education im Text The Nature of Computing as a Discipline (2018) Computers are logic machines. Some of the most impressive achievements in computing are proven and presented using the language of mathematics and many mathematical structures like matrices, vectors and graphs have become standard computing concepts. Large parts of computing studies formal objects, such as algorithms and models of computing. Many questions of computing are best solved using mathematics and logic as tools. School curriculum recommendations have acknowledged the tight connection between computational, mathematical and logical thinking.
Bemerkungen
Since the 1990s, debates about the role of mathematics in computing have lost their zeal; today there is a broad consensus on the importance of diff erent kinds of approaches to computing. In universities, the requirements in computing commonly include discrete mathematics, probability and statistics. Yet there is still debate about the relationship between computing and mathematics and how much mathematics a computing professional or a researcher shoud learn.
Von Matti Tedre im Buch Computer Science Education im Text The Nature of Computing as a Discipline (2018) Those who argue that much of the work in computing actually boils down to mathematics and logic have referred to the aims and central questions, necessary skill set, and methods and practices of computing as well as the computer’s logical organization. Many aspects of computers and programs can be described using mathematical functions and symbol manipulation. Program states are oft en practically infinite – mathematics is the best tool for dealing with infinity. The theory of computing is very much a mathematical theory. Those who advocate for a stronger inclusion of mathematics in computing education point out that most areas of computing have a close relationship with specific areas of mathematics ( Baldwin, Walker & Henderson, 2013 ).
Von Matti Tedre im Buch Computer Science Education im Text The Nature of Computing as a Discipline (2018) Formal hat die Informatik viel mit der Mathematik zu tun: An den Hochschulen
sind Mathematik und Informatik oft in einem gemeinsamen Fachbereich zusammengelegt.
Der Begriff Informatik wird (obwohl historisch falsch) oft als zusammengesetzt
aus Information + Mathematik verstanden, das Konzept des Algorithmus
stammt aus der Mathematik und ist in beiden Disziplinen sehr wichtig.
Die GI-Standards für die Sekundarstufe I sind den amerikanischen Mathematikstandards
nachempfunden. Das Konzept der Modellierung (Modellierung und
Implementation anstelle von Programmierung) findet sich ebenfalls auch in der
Mathematik.
Aus dieser Perspektive fällt es schwer, Informatik von Mathematik deutlich
abzugrenzen. In beiden Disziplinen wird in dieser Sichtweise der Problemlöseprozess
zentral gesetzt, der im Wesentlichen disziplinspezifisch als Besonderheit
hat, dass die Problemlösung ein formales Modell darstellt.
Von Nadine Bergner, Hilde Köster, Johannes Magenheim, Kathrin Müller, Ralf Romeike, Ulrik Schroeder, Carsten Schulte im Buch Frühe informatische Bildung - Ziele und Gelingensbedingungen für den Elementar- und Primarbereich (2018) im Text Zieldimensionen informatischer Bildung im Elementar- und Primarbereich auf Seite 54