/ en / Traditional / mobile

Beats Biblionetz - Begriffe

Effektstärken-Klasseneffect size classes

Diese Seite wurde seit 4 Jahren inhaltlich nicht mehr aktualisiert. Unter Umständen ist sie nicht mehr aktuell.

iconBiblioMap Dies ist der Versuch, gewisse Zusammenhänge im Biblionetz graphisch darzustellen. Könnte noch besser werden, aber immerhin ein Anfang!

Diese Grafik fensterfüllend anzeigen als Pixelgrafik (PNG) Vektorgrafik (SVG)

iconSynonyme

Effektstärken-Klassen, effect size classes

iconBemerkungen

Paul D. EllisCohen’s cut-offs provide a good basis for interpreting effect size and for resolving disputes about the importance of one’s results.
Von Paul D. Ellis im Buch The Essential Guide to Effect Sizes (2010) im Text Interpreting effects auf Seite 40
In his authoritative Statistical Power Analysis for the Behavioral Sciences, Cohen (1988) outlined a number of criteria for gauging small, medium, and large effect sizes estimated using different statistical procedures.
Von Paul D. Ellis im Buch The Essential Guide to Effect Sizes (2010) im Text Interpreting effects
Paul D. EllisCohen himself was not unaware of the "many dangers" associated with benchmarking effect sizes, noting that the conventions were devised "with much diffidence, qualifications, and invitations not to employ them if possible" (1988: 12, 532).
Von Paul D. Ellis im Buch The Essential Guide to Effect Sizes (2010) im Text Interpreting effects auf Seite 42
Paul D. EllisThe fact that they are used at all - given that they have no raison d’etre beyond Cohen’s own judgment - speaks volumes about the inherent difficulties researchers have in drawing conclusions about the real-world significance of their results.
Von Paul D. Ellis im Buch The Essential Guide to Effect Sizes (2010) im Text Interpreting effects auf Seite 42
Paul D. EllisDespite these advantages the interpretation of results using Cohen’s criteria remains a controversial practice. Noted scholars such as Gene Glass, one of the developers of meta-analysis, have vigorously argued against classifying effects into "t-shirt sizes" of small, medium, and large.
Von Paul D. Ellis im Buch The Essential Guide to Effect Sizes (2010) im Text Interpreting effects auf Seite 41
There is no wisdom whatsoever in attempting to associate regions of the effect size metric with descriptive adjectives such as “small,” “moderate,” “large,” and the like. Dissociated from a context of decision and comparative value, there is little inherent value to an effect size of 3.5 or .2. Depending on what benefits can be achieved at what cost, an effect size of 2.0 might be “poor” and one of .1 might be “good.”
Von Gene V. Glass, Barry McGaw, Mary Lee Smith im Buch Meta-analysis in social research (1981) auf Seite 104
Paul D. EllisReliance on arbitrary benchmarks such as Cohen’s hinders the researcher from thinking about what the results really mean. Thompson (2008: 258) takes the view that Cohen’s cut-offs are "not generally useful" and notes the risk that scholars may interpret these numbers with the same mindless rigidity that has been applied to the p = .05 level in statistical significance testing. Shaver (1993: 303) agrees: "Substituting sanctified effect size conventions for the sanctified .05 level of statistical significance is not progress."
Von Paul D. Ellis im Buch The Essential Guide to Effect Sizes (2010) im Text Interpreting effects auf Seite 42
Paul D. EllisCohen’s effect size classes have two selling points. First, they are easy to grasp. You just compare your numbers with his thresholds to get a ready-made interpretation of your result. Second, although they are arbitrary, they are sufficiently grounded in logic for Cohen to hope that his cut-offs “will be found to be reasonable by reasonable people" (1988: 13). In deciding the boundaries for the three size classes, Cohen began by defining a medium effect as one that is “visible to the naked eye of the careful observer" (Cohen 1992: 156). To use his example, a medium effect is equivalent to the difference in height between fourteen- and eighteen-year-old girls, which is about one inch. He then defined a small effect as one that is less than a medium effect, but greater than a trivial effect. Small effects are equivalent to the height difference between fifteen- and sixteen-year-old girls, which is about half an inch. Finally, a large effect was defined as one that was as far above a medium effect as a small one was below it. In this case, a large effect is equivalent to the height difference between thirteen- and eighteen-year-old girls, which is just over an inch and a half.
Von Paul D. Ellis im Buch The Essential Guide to Effect Sizes (2010) im Text Interpreting effects auf Seite 41
Effect sizes seen in the social sciences are oftentimes very small (Rosnow & Rosenthal, 2003). This has led to difficulties in their interpretation. There is no agreement on what magnitude of effect is necessary to establish practical significance. Cohen (1992) of fers the value of r .1, as a cut-off for “small” effects (which would indicate only a 1% overlap in variance between two variables). However, Cohen did not anchor his recommendations across effect sizes; as such, his recommendations for r and d ultimately differ in magnitude when translated from one to another. For instance, Cohen suggests that r  .3 and d  .5 each indicate a cut-off for moderate effects, yet r  .3 is not the equivalent of d  .5. Other scholars suggest a minimum of r  .2 (Franzblau, 1958; Lipsey, 1998) or .3 (Hinkle, Weirsma, & Jurs, 1988). In the current article, all effect size recommendations, where possible, are anchored to a minimum of r  .2, for practical significance (Franzblau, 1958; Lipsey, 1998). These readily convert from r to d for instance, without altering the interpretation. Note that this is a suggested minimum not a guarantee that observed effect sizes larger than r  .2 are practically significant. Such cut-offs are merely guidelines, and should not be applied rigidly (Cohen, 1992; Snyder & Lawson, 1993; Thompson, 2002).
Von Christopher J. Ferguson im Text An Effect Size Primer (2009)

iconVerwandte Objeke

icon
Verwandte Begriffe
(Cozitation)
Effektstärkeeffect size, Metaanalysemeta-analysis, Statistikstatistics

iconHäufig co-zitierte Personen

Jacob Cohen Jacob
Cohen

iconStatistisches Begriffsnetz Dies ist eine graphische Darstellung derjenigen Begriffe, die häufig gleichzeitig mit dem Hauptbegriff erwähnt werden (Cozitation).

Diese Grafik fensterfüllend anzeigen als Pixelgrafik (PNG) Vektorgrafik (SVG)

iconZitationsgraph

Diese Grafik fensterfüllend anzeigen als Pixelgrafik (PNG) Vektorgrafik (SVG)

iconErwähnungen Dies ist eine nach Erscheinungsjahr geordnete Liste aller im Biblionetz vorhandenen Werke, die das ausgewählte Thema behandeln.

iconAnderswo suchen Auch im Biblionetz finden Sie nicht alles. Aus diesem Grund bietet das Biblionetz bereits ausgefüllte Suchformulare für verschiedene Suchdienste an. Biblionetztreffer werden dabei ausgeschlossen.

iconBiblionetz-History Dies ist eine graphische Darstellung, wann wie viele Verweise von und zu diesem Objekt ins Biblionetz eingetragen wurden und wie oft die Seite abgerufen wurde.

Verweise auf Effektstärken-Klassen 23
Webzugriffe auf Effektstärken-Klassen 242521108327321323111113151211111126
20132014201520162017