/ en / Traditional / mobile

Beats Biblionetz - Texte

Designs for Learning Analytics to Support Information Problem Solving

Philip H. Winne, Jovita M. Vytasek, Alexandra Patzak, Mladen Rakovic, Zahia Marzouk, Azar Pakdaman-Savoji
Zu finden in: Informational Environments (Seite 249 bis 272), 2017    
Erste Seite des Textes (PDF-Thumbnail)
Diese Seite wurde seit mehr als 7 Monaten inhaltlich nicht mehr aktualisiert. Unter Umständen ist sie nicht mehr aktuell.

iconZusammenfassungen

Chapter 11 (Winne et al., 2017) has a unique focus in investigating technologies that support learners over longer stretches of time (up to several months) while they are traversing their informational environments. The concrete learning context presented in this chapter is the assignment to create a term paper, an activity that is referred to as information problem solving. The adaptive learning environment is based on nStudy, a tool that captures the complete and detailed history of a learner’s online activities. Through learning analytics, aggregated data from nStudy can then be fed back to the learner in order to assist and support self-regulated activities over various stages of information problem solving (assistive adaptivity).
Von Jürgen Buder, Friedrich W. Hesse im Buch Informational Environments (2017) im Text Informational Environments
Learners working on major learning projects, such as an undergraduate thesis, frequently engage in information problem solving (IPS). In round-trip IPS, learners set goals and develop a work plan, search for and filter sources, critically analyze and mine key information, and draft and revise a final product. Information problem solving is a prime site for self-regulated learning (SRL) whereby learners formulate and carry out self-designed experiments to improve IPS skills and expand knowledge about the topic of the learning project. We describe nStudy, a software system developed to gather ambient trace data that operationally define features of IPS and SRL as learners work on learning projects. We illustrate how trace data can be used to promote learners´ (a) understanding of the topic of a learning project and (b) development of IPS by generating learning analytics, guidance in the form of quantitative and qualitative accounts describing information learners work with and operations they apply to information. Three main challenges are addressed: learning how to plan a learning project, expanding knowledge of the topic of a learning project, and benefiting from and productively contributing to peer reviews of draft products. We conjecture about an emerging ecology for IPS in which big data and learning analytics can be major resources for education.
Von Philip H. Winne, Jovita M. Vytasek, Alexandra Patzak, Mladen Rakovic, Zahia Marzouk, Azar Pakdaman-Savoji et al. im Buch Informational Environments (2017) im Text Designs for Learning Analytics to Support Information Problem Solving

iconAnderswo finden

icon

iconVolltext dieses Dokuments

LokalAuf dem WWW Designs for Learning Analytics to Support Information Problem Solving: Artikel als Volltext bei Springerlink (lokal: PDF, 214 kByte; WWW: Link OK )

iconAnderswo suchen Auch im Biblionetz finden Sie nicht alles. Aus diesem Grund bietet das Biblionetz bereits ausgefüllte Suchformulare für verschiedene Suchdienste an. Biblionetztreffer werden dabei ausgeschlossen.

iconBiblionetz-History Dies ist eine graphische Darstellung, wann wie viele Verweise von und zu diesem Objekt ins Biblionetz eingetragen wurden und wie oft die Seite abgerufen wurde.